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1. Phys. A. Math Gen 26 (1993) 7097-7114. Printed in the UK 

Time-independent invariants of motion for the quadratic 
system 

D D Hua, L Cair6 and M R Feix 
PMMS, Centre National de iaRecherche Scientifique. 45071 Orleans, Cedex 2, France 

Received 19 July 1993 

Abstract A Hamiltonian method is developed to obtain first integrals of the form PQ* and 
PQfiR’ for a general system of two-dimensional antonomom ordinary differential equations 
with quadratic terms, where P, Q and R are linear or quadratic polynomials. and &. v are two 
real numbers. It is found that there is an intimate relationship between the polynomials and lhe 
equilibrium points of the system, which is useful for determining the existence of periodic orbits 
and asymptotic behaviour. 

1. Introduction 

In this work, we try to find invariants of the quadratic system (QS) defined by 

-- = X = a i ~  + b l l X 2  + blzxy + clyZ dx 
dt 

dt 
-- dy = y = azy + CZX’ + b 2 p y  + h z y 2 .  

There are many natural phenomena that can be described by the QS or equivalent systems 
[I] .  For example, the Lotka-Volterra system (LVS) (with CI = cz = 0 in the QS) could 
model the time evolutions of conflicting species in biology and of chemical reactions [21; 
the QS is derivable from the equations of continuity describing the interactions~ of ions, 
electrons and neutral species in plasma physics (with the assumption of quasi-neutrality to 
eliminate either the ion or electron equation) 13.41, and a reduced QS is obtained from a 
generalized Blasius equation for fluid flow around a wedge-shaped obstacle in boundary 
layer theon [51. In the context of conflicting species, the linear terms denote the growth 
(or decay) rates of each species independent of the other species; the self-interaction terms 
(xz in X and yz  in 9) represent the control on over-population of each of the respective 
species (such as cannibalism or depletion of resources), and the cross-interaction terms 
(xy  in i and j )  represent inter-species (e.g predator-prey) interactions. In the context of 
plasma physics, all nonlinear terms represent binary interactions or model transport across 
the boundary of the system. In solving for the solutions of a QS, it is worth knowing, given 
a set of initial conditions, what its long-time asymptotic behaviour will be or~whether stable 
periodic solutions exist. The existence cf stable periodic orbits would be rather important 
for experimentalists wishing to obtain and maintain a stable oscillatory state. Since the 
solutions of the QS in general cannot be written in terms of elementary functions, the two 
questions of asymptotic behaviour and the existence of stable periodic orbits are rather hard 
to answer. Nor is it easy to explore the general solution using numerical schemes, since one 

0305470/93/237097+18$07.50 @ 1993 1OP Publishing Lld 7097 



7098 D D Hua et a1 

has to prescribe all the coefficients of the Qs in terms of real numbers. On the other hand, 
it is known that given certain conditions on the coefficients of the QS, one can obtain time- 
independent first integrals or invariants in terms of elementary functions ( I @ ,  y )  such that 
i = 0) [6]. Then trajectories of the QS are obtained as contours of the invariant, and, given a 
set of initial conditions, one can readily establish the existence of periodic solutions or find 
the asymptotic state. There is a long history of research on finding sufficient conditions for 
which periodic solutions (i.e. centres) exist for systems equivalent to the QS, and numerous 
results were obtained which we are not able to survey in full. However, most of the previous 
work assumed that the origin is a linear centre (i.e. having eigenvalues zki) which we do 
not assume here in equation (1). Reyn has compiled an excellent bibliography of such 
publications [7]. We mention two cases well known to us: one is the Carleman method 
[8] which assumes a quasi-polynomial form with unknown parameters for the invariant, 
and substitute it into the QS to solve for the unknowns and to obtain conditions on the QS 
coefficients. The Carleman method h& been used successfully to find invariants (both time 
dependent and independent) in many dynamical systems, for example, the Lorenz system 
[9] and the N-dimensional LVS [Z]. Recently, Cair6 et a[ and Bouquet and Dewisme have 
developed a Hamiltonian method to find time-independent invariants [6,10,111. Although 
the equations to solve for the unknown parameters for the Hamiltonian method are nonlinear 
(but algebraic) and hence more difficult than those of the Carleman method, which are linear, 
the advantage of the Hamiltonian system is that it can assume more general forms for the 
invariants than the Carleman method (see discussions in [6] and section 5 in this paper). Also 
in [6], Cair6 et al discovered a geometrical relationship between time-independent invariants 
and the equilibrium points of the system (i.e. i ( x 0 ,  yo) = y(xo, yo) = 0). Specifically, if 
an invariant of the form II = P, (x ,  y ) Q l ( x ,  y)’ exists (subject to certain conditions on the 
coefficients of the Qs), for a quadratic polynomial P I  (x, y )  and a linear polynomial Ql(x, y )  
in ( x ,  y )  and a number w,  then P t ( x ,  y )  = 0 is a conic section connecting two equilibrium 
points of the QS, and Q l  ( x ,  y )  = 0 is a line connecting the same two equilibrium points. 
In addition, if an invariant of the form IZ = Pz(x,  y ) Q z ( x ,  y ) ” R z ( x ,  y ) ” ~  exists (subject to 
other conditions on the coefficients of the as) for linear polynomials Pz(x ,  y), Q z ( x ,  y) 
and R z ( x , y )  in ( x , y ) ,  p and U being two numbers, then P z ( x , y )  = 0, Q z ( x , y )  = 0 
and & ( x .  y )  = 0 are three non-parallel lines joining three equilibrium points of the QS, 
thus forming a triangle. Since the polynomial curves &(x,  y )  = 0, Q i ( x ,  y )  = 0, and 
Ri(x ,  y )  = 0 (i = 1 or 2) of invariants I I ( x .  y )  and Iz(x. y )  are contours of II(x, y )  (or 
Iz(x, y f ) ,  they are trajectories of the QS. For the invariants 12. since the three lines form a 
triangle in phase space with vertices at three equilibrium points of the Qs, the trajectories 
starting inside the triangle will evolve asymptotically to an attracting equilibrium point (e.g 
a sink or a stable node) at one vertex of the triangle. For invariants 11, when the conic 
PI ( x ,  y )  = 0 and the line Q l ( x ,  y )  = 0 bound a region in phase space and p > 0, there 
exist stable periodic solutions. Otherwise if p c 0, trajectories starting inside the enclosed 
region will asymptotically approach an attracting equilibrium point, also at an intersection 
of P I  = 0 and Ql = 0. We use these geometrical ideas to find more invhants of the forms 
I1 and I2  for the QS than those previously found in [6]. 

Here we consider polynomial curves that do intersect rhe origin (Si(O,O) = 0) in 
searching for invariants of the form 11~ and 12, since in [6] we considered only polynomial 
curves S ; ( x ,  y )  = 0 (where I E Sl(x ,  y)Sz(n ,  y ) ” .  . .) that do not pass through the origin 
(i.e. Si(0,O) + 0). The organization~of the paper is as follows: in section 2 we review 
the Hamiltonian method for the two invariants I l (x ,  y )  and Iz(x, y )  of [6], discuss their 
geometrical properties via two sample phase portraits, and offer new interpretation of 
previous results pertaining to the existence of periodic orbits. In section 3, using the 
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Hamiltonian method, we calculate invariants of the form I l ( x ,  y )  with PI(O, 0) = 0 and 
Ql(0,O) = 0 and the invariant conditions under which I ,  exists, and present plots and 
phase portraits showing that the intersections of the curves PI ( x ,  y )  = 0 and Ql (x. y )  = 0 
are two equilibrium points of the Q S ,  one of which is the origin. In section 4, we similarly 
calculate invariants of the form I&, y )  with Pz(0,O) # 0, Q z ( 0 , O )  = 0 and R2(x, y )  = 0 
and the invariant conditions under which 12 exists, and present a plot and phase portrait 
showing that the intersections of the curves P2(x, y )  = 0, Q&, y )  = 0 and Rz(x, y )  = 0 
are at three equilibrium points of the QS, forming a triangle with the origin at one vertex. In 
section 5, specializing to the LVS (a special case of the Q S  with c1 = c2 = 0), we apply the 
Hamiltonian method to search for invariants I I ( x .  y )  and I2(x,  y )  and compare with those 
found previously in [2] .  In section 6, we summarize the results, discuss the implications 
of the geometric properties on the existence of other invariants, and outline perspectives of 
future work. 

2. Review of previous results of the Hamiltonian method for the QS 

Given the QS expressed by equations (1). the Hamiltonian method [IO] attempts to express' 
a QS in the form 

where I ( x ,  y )  is a time-independent invariant and F ( x ,  y )  is an arbitrary function of (x, y )  
only. In 161, we tried to find an invariant of the form I l ( x ,  y )  = P l ( x ,  y )  Ql(x, y)" where 

(3) 
P i ( x ,  y )  = k +  AX + By + Cx2+ D x y  + E y 2  

Q I  ( x .  Y )  = 1 + ax + By 

are polynomials in ( x ,  y ) .  Substituting I , ( x ;  y) into equations (Z), we arrived at 

and substituting P l ( x ,  y )  and Q l ( x ,  y )  from ( 3 )  into (4). we noted that QY-IF must be a 
constant for (4) to be equivalent to the QS.  We took QY-'F = 1.  Furthermore, equating 
the coefficients of x ' y j  (i, j = 0 to 2) in (4) to the corresponding coefficients of x ' y j  in 
(1) and solving, we arrived at 
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and the invariant conditions, 

x 

Figure 1. ( U )  Plot of PI (x. y) = 0 and QI (x .  y) = 0 for 11 = PI Q Y .  (b) Phase pomit  for 
lhe Qs in the neighbourhood of the equilibrium points. Both plots use coeffiieienls defined in 
section 2. 

Also in [6] we showed that the conic section P,(x, y) = 0 and the line Ql(x, y)  = 0 
intersect at the same two equilibrium points of the QS. To show a sample plot of the conic 
and line, and the phase portrait of the Qs, we use QS coefficients a1 = 1, bll = 0.35, 
b u  = 0.35, bIz = -0.8, b21 = -0.8, and hence the invariant conditions demand that 
g = -1, cI = -0.05 and cz = -0.05. With these coefficients of the QS, p = 1.25 and there 
are four real equilibrium points at centre nl = (-0.91,0.91), saddle irz = (-2.2,0.28), 
saddle ir3 = (0.0) and saddle irq = (-0.28,2.2). Figure I(a) shows the conic P l ( x ,  y) = 0 
(in this case a hyperbola) and the line Q l ( x ,  y) = 0 which intersect at two equilibrium 
points H Z  and zh; the conic and the line form the boundary of a closed region around the 
centre TI. The conic PI (x, y) = 0 and the line Q I  ( x ,  y) = 0 are trajectories of the Qs since 
they are contours of 11 = P l ( x , y ) Q l ( x ,  y )p  = 0 (since /I > 0). hence trajectories starting 
inside the enclosed region (corresponding to different contom of It) cannot intersect either 
the conic or the line. Figure I(b) shows the phase portrait of the QS in the neighbourhood 
of the equilibrium points. We note that since the centre RI is enclosed by the conic and the 
line, then there are stable periodic trajectories around irl. It must be pointed out, however, 
that from our experience in plotting phase portraits, it seems unnecessary for PI = 0 and 
Q I  = 0 to enclose a region of phase space in order to have stable periodic orbits (see 
figure 1 in 161). Without making the assumption that PI = 0 and Ql = 0 enclose a region, 
we cannot provide any geometrical argument for the existence of stable periodic orbits for 
p > 0 (nor could we easily present any algebraic argument). Here we have implicitly 
assumed that Pl(x, y )  = 0 does not intersect the origin, hence Pl(O.0) = k # 0. Note that 
if PI  (0,O) = k = 0, then A = 0 = B = C = E ,  and the invariant conditions also demand 
that CI = 0 = c2, which would reduce the Qs and the invariant 11(x ,  y) to the Lvs and an 
invariant of type (U), respectively, as discussed in [Z]. To obtain new results, the conic 
PI (n, y) = 0 must not intersect the origin (i.e. Pl(0,O) = k # 0). The line Ql(x ,  y) by 
construction does not intersect the origin. 
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In [6], we also tried to find an invariant of the form 22 = Pz(x,  ~ ) Q z ( x , y ) ~ R z ( x ,  y)",  
where 

9 ( x ,  y )  = 1 + LYX + B y  
Q z ( x ,  y )  =~ 1 + A X  + By 
&(x, y )  = 1 + CX + DY 

are linear polynomials in ( x ,  y ) .  Similarly, we substituted I ~ ( x ,  y )  into (2)  and arrived at 

In order that (6) is equivalent to a QS, we use reasoning similar to that above and set 
Q;-'R;-'F = constant = 1. Equating the coefficients of x ' y j  in (6) to the corresponding 
coefficients of x i y j  in (1) and solving, we unfortunately could only obtain an implicit 
relation between the coefficients of 4 ( x ,  y). Q&, y) and &(x.  y )  and those of the Qs 
(for more details, see [6]). However, we did obtain explicitly the invariant conditions, 

a1 + a2 = 0 biz = b21 = 0. 

We also showed that the lines 9 ( x ,  y )  = 0, Q2(x,  y )  = 0 and Rz(x ,  y )  = 0 intersect 
at the three equilibrium points of the QS excluding the origin, thus forming a triangle. 
Furthermore, we discovered that either p or v is negative (or both) and hence not all three 
lines are contours of 22 = P2 Qg R," = 0 (the line with the negative exponent is a contour 
of 22 = 00) and thus trajectories starting inside the triangle will evolve to the attractive 
equilibrium point at a vertex of the triangle, even though they still cannot intersect the 
lines. To show a sample plot of the lines and phase portrait ofthe QS, we use a1 = 1.634, 
bll = 2.80, h22 = 3.36 c, = 0.564 and c2 = 0.376 and the invariant conditions lead to 

Figure 2. Plot of P d x ,  y )  = 0, QAx.  y) = 0 and &(x ,  y) = 0 (doaed lines) and phase 
pomait for the Qs in the neighbourhood of the equilibrium poinu. The mefficients are defined 
in section 2. 
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a2 = -1.634 (along with b12 = 0 = bzl). The equilibrium points of the QS for this choice 
of coefficients are a saddle XI = (-0.52.0.41). a stable node x2 = (-0.58,0.097), a 
saddle rr, = (0.0). and an unstable node rk = (-0.097,0.48). With these coefficients 
of the QS, the resulting solutions give the lines P2(x. y) = 1 + 1 . 4 3 ~  - 1 . 7 8 ~  = 0, 
Qz(x, y) = 1 + 0 . 3 3 ~  - 2y = 0 and R2(x,  y) = 1 + 1 . 6 7 ~  - 0 . 3 3 ~  intersecting at irl, 
JCZ and 7% forming a triangle as shown in figure 2 (dotted limes). The phase portrait is 
also shown in figure 2, where trajectories forming the triangle with vertices at q,  nz and 
~4 are evident. Also, all trajectories starting inside the triangle approach the vertex r 2  (the 
stable node). Once again, the lines do not ~ intersect the origin, since we had chosen P2(0, 0), 
Q A O ,  0) and M O ,  0) # 0. 

3. Hamiltonian method for more invariants of the form I ,  = P,(z, y)Q,(z, y)’ 

Since in [61 we imposed that in (3) PI (0,O) # 0 and Ql  (0,O) # 0, the curves PI ( x ,  y) = 0 
and Q l  [ x ,  y) = 0 cannot intersect at the origin. However, the geometly of the phase portrait 
in figure l(a) seems to suggest that there are other invariants of the form I I ( x ,  y) whose 
polynomial curves P1(x, y) = 0 and Ql(x, y) = 0 do intersect the origin (i.e. Pi(0,O) = 0 
and Qr(O.0) = 0). In fact, based on the geometrical assumption that the origin is one of 
two equilibrium points which are the intersections of a conic and a line, we expect to find 
three such cases in general (since the Qs has in general four equilibrium points). Thus we 
now try 

Note that both factors are zero at the origin. Substituting PI ( x ,  y) and Ql (x .  y) into (4) 
(setting Q:-’F = 1, as before) and equating with the corresponding equations in (1). we 
get 

where (8a) represent the coefficients of x ,  y, x2 ,  y2 and xy, respectively, in the equation 
for .i and (8b) represent the coefficients of x ,  y. x2, yz and xy ,  respectively, in the equation 
for y. We first examine a set of two homogeneous equations 

pB(p + 1) = 0 orA(p+ 1) = 0 

which has five possible solutions [or = 0, B = 01, [or = 0, B = 01, [ A  = 0, j3 = 01, 
[p = -11 and [ A  = 0, B = 01, where the first is trivial since it leads to Q I [ x ,  y) = 0 and 
will not be considered. The next three cases are the three different geometrical configurations 
where the origin is one of the two equilibrium points intersected by PI (x,  y) = 0 and 
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Q i ( x ,  y) = 0. The last case is degenerate and will be discussed in detail. We consider the 
four cases separately. 

(i) 01 = 0, E = 0 
This case leads readily to the solutions of (Sa)  and (Sb): 

E - arbitrary 

and invariant conditions 

c2 = 0. 

Because of the order in which we solved (S), all the coefficients of Pi(x, y) are proportional 
here to an arbitrary constant E ,  which is the coefficient of y z  in Pi(x ,  y). However, if we 
solve (8) in a different order, another coefficient of PI (rather than E )  would be arbitrary, 
and the rest of the coefficients would be proportional to it. In fact, this is not surprising since 
whenever a coefficient of PI (or Q l )  is non-zero it can always be factored out and ignored, 
and the invariant I I  would still remain an invariant. What is important is the relationship 
between the coefficients, which remains the same for any non-zero value of the arbitrary 
constant. Furthermore, since 01 = 0 in Q l ( x ,  y). 6 could also be factored from Ql. Hence 
the solutions to the coefficients of PI ( x ,  y) and Ql  ( x ,  y) could be written alternatively as 
(with E and f i  factored out) 

al - 2a2 
A = -  B = O  

C, 

The proportionality of all coefficients in PI to an arbitrary constant and the subsequent 
factoring of the arbitrary constant imply that the number of unknown coefficients in PI is 
one less than originally assumed, from five ( A ,  E ,  C, D and E )  to four ( A ,  E C and D). 
That f i  could be factored from Ql also reduces the number of unknowns in QI from two (or 
and p )  to one (or). The factorizable property of a coefficient, arbitrary or not, from PI and 
Ql is present for the rest of the cases considered (also for Q2 and R2 in section 4). The 
actual number of unknown coefficients versus the number of equations might have important 
implications for the existence of invariants, a conjecture we will discuss in section 6. To 
show a sample plot, we choose the coefficients of the QS as al = 3, a2 = 2, bll = 1, 
b22 = 2, C I  = -1 and, hence, bl2 = 1 and bzl = 4 from the invariant conditions. With 
these coefficients, @ = -$ < 0 and the real equilibrium points of the QS and their linear 
analyses are an unstable no& nl = (0, 0), a stable node nz = (-3,0) and a double 
equilibrium saddle point at n3 = (3, -3). Figure 3(a) presents the phase portrait and shows 
the line Qt(x, y) = By ~= 0, the x-axis, and the conic section Pl(x,  y) = 0, an ellipse 
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with this choice of coefficients of the QS (E  = 1). The intersections of Ql(x, y) = 0 and 
PI ( x ,  y) = 0 are r1 and HZ and indeed are two equilibrium points of the Qs. Here, similarly 
to figure l (a) ,  the phase space bounded by PI ( x ,  y) = 0 and Q I ( x ,  y) = 0 is a closed region. 
But, in contrast to figure I@), where LL > 0 and hence both PI(x, y) = 0 and Ql(x, y) = 0 
are contours of 11 = 0, and trajectories starting inside the bounded region cannot intersect 
the boundary, here f i  c 0, hence PI ( x ,  y) = 0 is a contour of 11 = 0 and Q , ( x ,  y) = 0 
is a contour of 11 = M, and trajectories starting inside the bounded region could evolve to 
the boundary at the stable node RZ (the intersection of PI = 0 and Q I  = 0). To illustrate 
the importance of the sign of f i  on the existence of stable periodic trajectories, we present 
in figure 3(b) a sample phase portrait with al = 2, az = -1.7, bll = -2.5, bzz = 1.4, 
CI = -1.6 and, hence, blz = -3.1 and bzl = 4.1 from the invariant conditions. Here 
LL = I .2 > 0; the ellipse Pl(x,  y) = 0 and line QI ( x ,  y )  = 0, both trajectories and contours 
of 11 = 0, intersect at two saddles H3 and 714 and enclose a region containing two centres 
HI and RZ. There are stable periodic orbits around the two enclosed centres. In contrast to 
figure 3(a), where other equilibrium points are outside the enclosed region and trajectories 
starting inside evolve to the stable node, here all equilibria a~ inside and on the boundaries 
of the enclosed region and trajectories starting inside are closed and periodic. The feature 
that polynomial curves enclose a bounded region in the neighbourhood of equilibrium points 
is quite useful in that all trajectories starting inside the region either remain inside, where, 
if there is a centre (see figures l(b), 3(b)), it would confirm the existence of stable periodic 
trajectories, or evolve to the attractive equilibrium point (an intersection of PI ( x ,  y) = 0 
and Ql(x, y)  = 0) which would yield their asymptotic behaviour as seen in figure 3(a). 
Some subsequent phase portraits for other cases (with appropriate coefficients of the as) 
also exhibit this useful feature. 

D D Hua et a1 

Figure 3. (a) Plot of P 1 f x . y )  = 0 and el(%, y )  = 0 (dotted curves) and phase portrait for 
the QS about the neighburhood of the equilibrium points. Coefficients are defined in section 3, 
case (i). wilh LL c 0. (h )  Plot of P l ( x . y )  = 0 and Q I ~  y )  = 0 (dotted curves) and phase 
portrait for the QS about the neighbourhood of the equilibrium points. Coefficients are defined 
in section 3. case (i), with U > 0. 

(ii) A = 0, B = 0 
This is the 'symmetric' case to ( i )  and has the following solutions to (80) and (8b): 

azczE c = -  a2E B E -  
hzz. :. bzz(2a1 - 02) 
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0 2  p = -- a1622 
QZE a1 

a=- 

and invariant conditions 

Because this is the symmetric case to (i), the arbitmy constant E plays the same role 
in PI and could be set equal to I ,  and a. similar t o ~ s  in (i). could also be set equal 
to 1. To show different characteristics, the sample plot here uses al = 3, (12 = -2.41, 
big '=~0.679, bzz = 2.23, c2 = -1.67 and thus, biz = -5.54 and bzl = -1.23 from the 
inmiant conditions. With these coefficients > 0, the real equilibrium points of the QS 
and their linear analyses are a saddle T I  = (0,0.83) and zz = (0, 0), also a saddle. Figure 4 
shows the phase portrait and the line Ql(x ,  y )  = 0 and conic section Pl (x ,  y) = 0 (both 
dotted curves) (also with E = 1). where the line Q l  ( x ,  y )  = a x  = 0 is the y axis and 
the conic section PI ( x ,  y )  =.O is a hyperbola (for these chosen coefficients of the as). The 
intersections of Qj(x. y) = 0 and P l ( x ,  y )  = 0 are rI and ZZ, the two equilibrium points 
of the QS. Unlike figure 3, here the polynomial curves do not enclose a bounded region in 
phase space. 

-2 - 1  O 2 

Figure 4. Plot of Pi(%. y )  = 0 and Ql(x. y) = 0 (doned curves) and phase ponrait for the QS 
in the neighbowhood of the equilibrium points. Coefficients are defined in section 3. c a ~ e  (ii). 

(iii) p = -1 
This leads to the following solutions of (8a) and (8b): 

2(Ul E i Cl A )  A - arbitrary B = 
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and the invariant conditions 

Here the arbitrary constant E is factorizable from PI, as in cases (i) and (ii), but A is 
truly arbitrary. Also, either a or p is factorizable from Ql (since a and p cannot both be 
zero). Factoring E and either CL or 6 from PI and Ql, respectively, would give altemative 
expressions for the solutions to the coefficients as in case (i), which is equivalent to setting 
the arbitrary constants equal to 1. For a sample plot we use a1 = 3, bll = 1, blz = 1. 
hzl = I ,  622 = -0.5 and hence CI = 1 and cz = 0.25 from the invariant conditions. With 
these coefficients, the real equilibrium points of the Qs and their linear analyses are a saddle 
TI = (-2,2.73), a stable node HZ = (-4,2), an unstable node H S  = (0,O) and a saddle 
~4 = (-2, -0.73). Figure 5(a) shows the intersections of the line Q l ( x ,  y) = 0 and a 
family of conic sections P l ( x ,  y ;  A) = 0 (with E = 1) at H Z  and YQ, two equilibrium points 
of the QS. Here the region asymptotically bounded by the family of polynomial curves is the 
parallelogram with vertices at the equilibrium points, and since p < 0, all trajectories starting 
inside evolve toward the stable node rrz. Using the Runge-Kutta method, figure 5(b) shows 
the phase portrait of the Qs which is nicely matched by the family of conics PI ( x ,  y) = 0 
and the line Q l ( x ,  y) = 0 in figure 5(a). 

x 

Figure 5. (a) Plot of the family of conics  PI^. y; A )  = 0 and Q\(x. y) = 0; (b) phase portrait 
for the QS in Ihe neighbourhood of the equilibrium points. Both plots use coefficients defined 
in case (iii). section 3. 

(iv) A = 0, B = 0 
This is a degenerate case since the quadratic polynomial P l ( x ,  y) is factorizable into two 
homogeneous linear polynomials. This solution to the homogeneous equations also leads 
to a set of coupled nonlinear algebraic equations that have no simple expression for their 
solutions. Thus we simplify as much as possible the solutions to (8a) and @b), which lead 
to 
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where 

d = [(bzzbzl - b11b12)* + 4(zbzz + bd(2bl i  + ~ Z I ) C I C ~ ] ~ ' ~ ~  

and invariant conditions 

where the third invariant condition is a complicated nonlinear equation in bll (since p, 
which appears on the RHS, is a function of bll). As in previous cases (i) through (iii), 
E is factorizable from PI and either.cu or ,3 is factorizable from Q I ,  which~would yield 
alternative expressions for the solutions to the coefficients that are equivalent to setting the 
arbitrary constants equal to 1. With invariant conditions al = 0 and a2 = 0, the equilibrium 
points of the Qs become rather degenerate in that (0.0) is the only real equilibrium point. 
Furthermore, linear analysis about (0.0) shows that both eigenvalues are zero, hence the 
origin is a peculiar equilibrium point which we are unable to classify. Vulpe and Sibuskii 
have extensively studied phase portraits of Qs with aI = az'= 0 [12]. Furthermore, with 
A = 0, B = 0, the conic section PI ( x ,  y) = 0 factorizes into two (real or complex) lines. 
The sample plot here uses b12 = 5.36, 62, = 1.41, & = -1.5, CI = -2.92, cz = 0.266 
and hence 611 = 0.33 from the third invariant condition. Figure 6 is the phase portrait and 
shows the l i e  Q l ( x . y )  = 0 and the two real lines of Pl(x.  y) = O  (with E = I )  whose 
intersection  is at (0, O), i.e. the sole equilibrium point of 'the QS. The three lines divide the 
phase space into six regions in which the trajectories behave as if the origin is a saddle. 
The three lines, being trajectories. do not change their flow direction after intersecting the 
origin. 

,. t , 

, , ,-; , ,a 
/ -6  . . ,  

-6 -3 0 ' 3  6 
r 

Figure 6. Plot of lhe two lines of Pi@. y )  = 0 and QI(x. y )  = 0 (dotted lines) and phase 
pomait for the QS in the neighbourhood of the equilibrium point (0.0). Coefficients are defined 
in case (iv) of section 3. 
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In this section we have calculated all the new invariants of the form ZI(x. y) = 
P~(x ,y)Qi(x ,y)”  in which P1(0,0) = 0 and Ql(0,O) = 0, where P ~ ( x , y )  is quadratic 
and Qi(x, y) is linear (x, y ) .  From geometric considerations, we expect, and find, the three 
cases for which the origin is one of two equilibrium points that are the intersections of 
the conic PI(x ,Y)  = 0 and the line Ql(x,y) = 0, namely cases (i), (ii) and (iii). For 
those cases and for closed regions bounded by PI = 0 and Ql = 0, if p > 0 then stable 
periodic orbits exist inside. Case (iv) is a degenerate case of the invariant of the form 12,  
which will be discussed further in section 4. To be complete, we now discuss two cases, 
[PI(O, 0) = 0, Qi@,  0) # 01 and [Pi(O; 0) # 0 and Ql(0,O) = 01, and show that they both 
lead to inconsistencies. First, for the &se [PI (0,O) # 0 and Ql (0.0) = ‘01, we note that 
(after setting Qf-’F = 1) (4) at the equilibrium point (0,O) reduce to 

Thus, either p = 0, which violates the functional form of I l ( x ,  y). or (aQI/ax) = 0 and 
(aQl/ay) = 0 at (0.0). which leads to Ql(x, y) = 0 and hence to a trivial invariant, 
or, lastly, P1(0,0) = 0, which is a contradiction. The other case [P l (O,O)  = 0 and 
Q I (0.0) # 01 would reduce the QS to the LVS and has been discussed previously in section 2. 

4. Hamiltonian method for more invariants of the form 
-r, = PAX, Y)Q,(z, YYR(Z, YY 

Because we had imposed that Pz(0,O) # 0, Qz(0,O) # 0 and &(O, 0) # 0 in (3, thus 
the lines P l ( x .  y) = 0, &(x, y) = 0 and R d x ,  y) = 0 could not intersect the origin. 
However, the geometry of the phase portrait in figure 2 seems to suggest that there are 
other invariants of the form I&, y) whose polynomial factors Pzfx, y) = 0, Qz(x. y) = 0 
and Rz(x ,  y) = 0 could intersect the origin. Based on the geometry that the origin is one of 
three equilibrium points forming a triangle, we expect to find three different configurations. 
We now try 

Pz(x, y)  = I + 01x +By Qz(x, y) = AX + BY R z ( x ,  y) = CX + Dy. (9) 

Here, we choose only two lines, Q*(x, y) = 0 and Rz(x,  y)  = 0, to intersect the origin, 
since the geometry of figure 2 suggested that each equilibrium point intersected by the 
lines is a vertex of a triangle. Substituting P&, y). Qz(x, y) and Rz(x, y) (and setting 
Q;-’ R;-‘ F = 1 as before) into (6) and equating with the corresponding equations in (1). 
we get 

DwA + CpB = a1 

(U + L L ) D ~ B  + (1 + IJ)DBA + (1 + p)CBB =biz 

uCB + DAp = -az 

DA@ + (Dm + uCB)B = -6n ( U  + 1 + /L)CCIA -CZ (lob) 

DB(w + p )  = 0 
(CP + D u ~ ) A  + CpBa = bli (U + 1 + p)DBB CI (W 

AC(w + p) = 0 

(u+p)C@A+(l  + / L ) D O ~ A + ( I + U ) C O ~ B  =-hi 
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where (loa) and (lob) represent the coefficients of x ,  y. x2, yz  and x y ,  respectively, in the 
i and j equations. As in section 3, we~first'examine the two homogeneous equations 

B D ( p +  U) = O  AC(p+  U) = O  

which have five possible solutions, [ A  = 0, B ,= 01, [C = 0, D = 01, [ B  = 0, C = 01, 
[A = 0, D = 01 and [ p  = -U], with the first two k ing  trivial, since they lead to 
Qz(x ,  y) 0 and Rz(x, y) E 0, respectively, and thus will not be considered. Furthermore, 
 the^ next two solutions lead to invariant conditions ct = 0, cz = 0, which transform the QS 
into the Lotka-Voltem equations, and azbi l (blz  - bzz) +(11bz~(bzi - bli )  = 0, which leads 
to invariants of type (In), previously obtained by Cair6 and Feix in [21. 

Hence we consider the last case [p = -U]. This solution leads to a set of coupled 
nonlinear algebraic equations from (loa) and ( lob ) .  As in case (iv) of section 3, we 
simplify as much as possible the expressions of the solutions to (IOU) and ( lob) ,  which are 

-czb& + (%CZ + b1lbzi)blz - 2CiCzbzi 
ai(bizbzi - 4ci~z) 

-cibzi + (2biici +bzzbiz)bz~ - %Czbiz 
d b i z b z i  - 4ClCz) 

D - arbitmy 

a =  

B =  
A - arbitrary 

and the invariant conditions 

a2 =a ,  

and 

1 -- a 
bzi +@ - ai) 

- -- - B 
biz - B(2 +ai) (~icz/CuB) + 1 

where the second and third invariant conditions are complicated coupled nonlinear equations 
involving all the coefficients of the QS (with a and j3 given above). As in previous cases in 
section 3, the arbitrary constants A and D are factorizable from Q Z  and RZ. respectively, 
or we may set A, D = 1. Thus, the number of unknowns in Pz is two, unaffected (a 
and B),  whereas in Qz, it is reduced from two (A and B )  to one ( B )  and in Rz it is also 
reduced from two (C and D) to one (C). Here the three lines Pz(x, y) = 0, Qz(x,  y) = 0 
and Rz(x, y) = 0 form a triangle as in the corresponding case in [6]. Also, since p = -U, 
only two of the lines (Pz(x, y) = 0 and either Q z ( x ,  y) = 0, if p > 0, or R&, y) = 0, if 
U > 0) are contours of 22 = 0, with the third one being a contour of 12 = W. Hence, we 
expect trajectories starting inside the niangle to approach the amactive equilibrium point 
at one vertex of the triangle. Unlike similar cases in sections 2 and 3, where if p > 0 
f periodic trajectories exist inside the bounded region, here there is no periodic trajectory 
inside the triangle since p or U is negative. For a sample plot we use a1 = 1, bli = 1 ,  
blz = 0.667, hzl = I, and & = -3.56, hence a2 = 1, c1 = -7.40 and cz = 0.180 from the 
invariant conditions. With these coefficients, the real equilibrium points of the QS and their 
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linear analyses are a stable node xi = (-1.56,0.282), a saddle xz = (-1.88, -0.563), a 
saddle n3 = (5.0.2.25) and a source n4 = (0,O). Figure 7 shows the phase portrait and 
the three lines Pz(x,  y )  = 0, Q2(x. y )  = 0 (with A = 1) and R&. y) = 0 (with D = I )  
forming a triangle. Their intersections at jq, x3 and jq are indeed three equilibrium points 
of the Qs. Trajectories starting inside the triangle tend to the stable node RI asymptotically. 
From geometric considerations of the equilibrium points of the QS, we expect to find three 
different configurations of triangles with the origin at one vertex, but have presented only 
one. However, the solutions for the coefficients of the polynomials, along with the second 
and third invariant conditions involving a, j3, blz and bzl, could be transformed to a cubic 
equation in one of the variables @ut too algebraically cumbersome to be presented) which 
implies three possible sets of (second and thiid) invariant conditions on the coefficients for 
the Qs, representing the three configurations. 

D D Hun et a1 

3 1 " i  I '  , I 

" 1  

..... ..... ....... ...... ...... ..... 
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Figure 7. Plot of 9 ( x .  y )  = 0, Qz(x. y )  = 0 and Rz(x. y)  = 0 (dotted lines) and phase 
pamait for the QS in the neighbourhood of the equilibrium points. The coefficients are defined 
in section 4. 

In this section we have calculated all new invariants of the form 12 = 9 ( x ,  y)Qz(x, y)" 
Rz(x, y)"  in which Pz(0,O) # 0, Qz(0, 0) = 0 and RdO, 0) = 0, where 9 ( x ,  y) ,  Qz(x, y )  
and Rz(x, y )  are up to linear orders in ( x ,  y ) .  To complete the analysis, we now discuss 
two cases, where in one case, only one line intersects the origin, say Rz(0,O) = 0 and 
M O ,  0). Qz(0.0) # 0, and in the other &e, all three lines intersect the origin. For the 
case Rz(0,O) = 0 and Pz(O,O), Qz(0,O) # 0 (after setting Qg-'R;-'F = I), equations (6) 
at the equilibrium point (0.0) reduce to 

Therefore, either v = 0, which violates the func n a l  form of &(x, y). or (aRz/8x)  = 0 
and ( a R z / a x )  = 0 at (0, 0). which leads to Rdx ,  y )  0 and hence a trivial invariant, or, 
lastly, Pz(O.O)Qz(O, 0) = 0, which is a contradiction. For the case where all three lines 
intersect the origin, the resulting solutions are a generalization of case (iv) in section 3, 
since there are now only two invariant conditions nl = a2 = 0, instead of the three previous 
conditions with U I  = nz = 0 and a complicated t h i i  invariant condition. We present the 
results for this degenerate case in the appendix. 

........ 
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5. Hamiltonian method for the Lotka-Volterra system 

Here, we apply the Hamiltonian method to the Lotka-Volterra System (LVS) to find new 
invariants of the form I l ( r ,  y )  and ZZ(X. y ) .  The LVS is a special case of the QS where 
CI = cz 0, and Cair6 and Feix have found three types of invariants [2]. For simplicity, 
we apply the rescaling method [IO] to the LVS, which reduces to 

X ( 1  + X  + R Y )  
dX 
dT 
dY 
dT 

-= 

- = A Y ( I +  R'X + Y )  

where X = (bilx/ni), Y = (bzzy/ad. T = (al t ) ,  R = (blzaz/b22al) R' = (bzlal/bllaz) 
and A = (az/a~). This rescaled LVS always has three equilibrium points at (0, 0), (-I, 0) 
and (0, - 1) and an equilibrium point at 

1 - R  1 - R '  
(imm) 

when R R' # 1. The equations to solve for the coefficients of invariants I l ( x .  y )  and I&. y )  
are the same as (8). (IO) and the corresponding equations in [6], with the coefficients of 
the L v s  substituted appropriately, specifically a, = I ,  bil = 1, b12 = R ,  CI = 0, az = A ,  
bu = A ,  bz1 = A R' and cz = 0. There are many invariants for this simplified system; 
however, many of the solutions are either trivial or special cases of those already found 
by Cair6 and Feix 121 and therefore will not be presented here. For example, we discard 
cases for which one of the invariant conditions is R = 0 or R' = 0 (or both), because 
then one of the equations in (1 1) is immediately solvable and the other becomes a Riccati 
equation which has well known invariants. We also discard the case of A = 1, R = 1 = R' 
which has the obvious invariant X = CY (C is a constant). There are only three new and 
non-trivial invariant conditions, all of them of the form II = PI Q f .  They are as follows: 
(i) Invariant conditions: A = -1, R = -1 and R' = -1, 

Herethecircle P I ( X ,  Y )  = (X+I)z+(Y+l) i - I  = Oandtheline Q l ( X , Y )  = l+X+Y = O  
intersect the equilibrium points at (-1.0) and (0, -1) .  
(ii) Invariant conditions: A = 1/2, R = 112, and R' = 2, 

I I ( X ,  Y )  = ( X  + X* + X Y  + CY2)Y-z  

where C is an arbitrary constant. Here a family of conic sections P l ( X ,  Y )  = X + Xz + 
X Y  + C Y z  = 0 intersect the line Q l ( X ,  Y )  = Y = 0 at the equilibrium points (0,O) and 
(-1,O). 
(iii) A symmetric case to (ii), with invariant conditions: A = 2, R = 2, and R' = 112, 

I I ( X ,  Y )  = (Y  + X Y  + cxz + Y2)X-z  

where C is again an arbitrary constant. Here a family of conic sections P I ( X ,  Y )  = 
Y + X Y  + C X 2  + Y 2  = 0 intersect the line Q l ( X ,  Y )  = x = 0 at the equilibrium points 
(0,O) and (0, -1). 
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All the invariant conditions here satisfy invariant condition (I) RR' = 1 in [2]. However, 
these more restrictive cases, with three invariant conditions instead of one, give time- 
independent invariant, whereas invariants of type (I) in [2] are all time dependent. In 
addition, invariant conditions here also satisfy invariant condition, (III) R + R'A = A + 1 
in [2], which also leads to a time-independent invariant. However, since the exponents of 
invariants of type (In) are proportional to (RR'- l)-I, it is clear that invariant conditions 
(I) and (111) are mutually exclusive (i.e. invariant conditions (I) and (m) cannot be satisfied 
simultaneously), a fact not explicitly stated in 121. 

6. Summary and conclusions 

From the phase portraits, we notice that if non-degenerate invariants of the forms 11 and 
12 exist (i.e. the invariant conditions do not impose that the origin is the only equilibrium 
poinq see case (iv), section 3), then for certain sets of coefficients of the QS the local phase- 
space in the neighbourhood of the equilibrium points is divided into a region bounded by 
polynomial curves (a line and a conic for 11, three lines forming a triangle for 12) and a 
region outside. For all non-degenerate 12 invariants, the bounded region is a triangle with 
vertices at three equilibrium points (see figures 2 and 7) and trajectories starting inside will 
evolve to an attracting equilibrium point at one vertex of the triangle (since pw < 0). In 
contrast, a bounded region exists only for some 1, invariants (e.g. see figures 1, 3 and 5). 
For these cases, trajectories starting inside the bounded region either remain inside (p  0), 
where there is a centre and they are periodic and closed, or they approach an attracting 
equilibrium point ( p  < 0), indicating their asymptotic behaviour. 

All the non-degenerate invariants found so far for the QS and LVS have three invariant 
conditions due to the difference between the number of equations and the number of 
unknowns. The Hamiltonian method yields ten equations corresponding to the coefficients 
of the x ,  y, x2. yz and xy terms in t h e i  and 3 equations (see (8) and (10)). For the I j ( x ,  y) 
invariant, there are actually four unknowns from the coefficients of the quadratic PI(x, y) 
polynomial and one unknown from the coefficients of the linear Q l ( x ,  y) polynomial (the 
number of unknowns are less by one than the total number of coefficients of the polynomials, 
because a non-zero coefficient can always be factorized out and ignored see discussions in 
case (i), section 3). and lastly, there is the unknown exponent p. For the I2(x, y) invariant, 
there are also only six actual unknowns: two from the coefficients of'P2 and one each 
from QZ and Rz, and the exponents p and U. Thus both types of invariants considered 
here contain a total of six unknowns embedded in ten equations which a priori leaves 
four equations to impose conditions on the coefficients of the Qs. However, the solutions 
sometimes eliminate one more equation than the number of unknowns 'suggests, so that 
only three equations are left to impose invariant conditions on the coefficients of the QS. 
For example, in section 3, case (iii), the solution p = -1 eliminates the two homogeneous 
equations in (8). and in section 4, the solution p = -U also eliminates the two homogeneous 
solutions of (10). For other cases in section 3, it is not evident whether the solutions or 
the invariant conditions eliminate one more equation than their respective numbers, but 
nevertheless the unknown coefficients and the invariant conditions together eliminate one 
more equation than their total number. This reasoning remains valid for the LVS studied in 
section 5, where rescaling revealed that it has only three independent coefficients (R, R' 
and A) ,  and thus it is not surprising that the three invariant conditions specify all of them 
completely (i.e. in terms of real numbers). 

In conclusion, we have found, along with results from [6], all the timeindependent 
invariants of the forms 11 = PI(x, y)Ql(x, Y ) ~  and IZ = 4 ( x ,  y)Q2(x, y)@R2(x. y)" 
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involving two and three equilibrium points of the Qs, respectively. A natural extension 
based on geometrical suggestions from the phase portraits would be to find invariants that 
involve four equilibrium points of the QS,  such as I3 = 4 ( x ,  y)Q3(x, y)@R3(x, y)"S3(x, y)' 
with 4, Q,, R3 and S3 linear polynomials in (x, y). where two of the polynomials 
are homogeneous (i.e. vanish at the origin), to represent lines intersecting the origin. 
We expect to solve for ten unknown coefficients: four from the two non-homogeneous 
polynomials, two from the two homogeneous ones and one from the unknown product 
function QT-'R,Y-'St-'F (substitute 13 into (2) and factor out Qr-'R,Y-'S$-l) which has 
to be inversely proportional to a homogeneous polynomial, say T ( x ,  y). and the three 
numbers .LL, v and A. These unknowns areembedded in fourteen equations representing the 
coefficients of x2, yz. xy, x 3 ,  xZy, xyz and,y3 from T ( x ,  y)i and T ( r ,  y ) j  in (2) .  Hence, 
a priori, we expect the remaining four equations to impose perhaps four (or three) invariant 
conditions. Actually, solving the fourteen complicated coupled nonlinear equations is left 
for future work. 

We hope that by fully exploring and utilizing the intimate relationship between the 
geometry of the equilibrium points and time-independent invariants for the two-dimensional 
QS, we might in the future apply these ideas to search for invariants in higher-dimensional 
autonomous systems. It is well known that higher-dimensional systems can exhibit chaotic 
orbits (e.g. the Lorenz system) and the existence of invariants, hence implying integrability 
of the system, will prevent trajectories from becoming chaotic [13]. Ever since the revival 
of the Painlev6 method via the ARS algorithm [141, which gives conditions for integrability 
and thus the existence of invariants, there have been many works applying the ARS algorithm 
to three-dimensional systems, such as the reduced LVS known as the ABC system (the most 
recent and complete work being 1151) and the Lorenz system [13]. A resulting important 
conjecture by Tabor and Weiss for the Lorenz system [I31 is whether satisfying just partial 
Painlevd conditions is sufficient for the existence of invariants. Unfortunately, the Carleman 
method seems to have yielded all the known (six) time-dependent invariants for the Lorenz 
system in which one set 'of partial Painlev6 conditions is sufficient to provide an invariant 
while the other set is not sufficient [9,13]. Presently, the issue of the sufficiency of the 
partial PGnlev6 conditions~ is far from settled. The Hamiltonian method, with the help 
of geometrical ideas, has found other invyiants which the Carleman method left out (as 
was shown in section 5 for the two-dimensional Lvs), and we hope in future, using the 
Hamiltonian method, to be able to find other invariants for the Lorenz system which might 
settle the conjecture of the partial Painlev6 conditions for integrability. 
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Appendix 

For the case in which three lines intersect the origin, we choose for Iz  = P2 Qg R; 

M X ,  Y) = +BY 
Qz(x, Y) = AX + BY 
Rz(x,  y) = CX t DY. 
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As in sections 2 and 4, we substitute the expressions for P2, Qz and R2 into (6) and equate 
the appropriate coefficients to those of the QS (after setting Q:-‘R;-’F = 1). AS in similar 
cases, the solutions to the coefficients and exponents are too algebraically involved, so that 
we decided to present them in a simplified manner as 

D D Hua et a1 

A = l  C = l  

p =  
(CI + c2DZB) (c&B + bllDB - b22D -CI) 

( C ~ C Z D + ~ Z ~ C Z D B + C I ~ I I  + c I c z B ) ( D - B ) D  
(CI + c 2 D B Z ) ( ~ ~ D B 2 + b ~ ~ D B - b ~ B - c ~ )  

( C I C Z D + ~ Z Z C Z D B + C I ~ I I  + c I c z B ) ( D -  B I B  
v = -  

with the coefficients B and D being solutions to the two algebraic equations, 

CZD’B’ + (biz - bzz) D B  - CI ( D  + B )  = 0 
CZD’B + (bll - bzl) D B  + @BZ - CI = 0. 

There are only two invariant conditions, al = 0 = az, which makes this case more general 
than case (iv) in section 3, which also has these two invariant conditions in addition to a 
third. In fact, after some cumbersome numerical work, we could show that imposing the 
third invariant condition from case (ivj of section 3 to this case here, we obtain the expected 
result that p = U. As in case (iv) of section 3, this degenerate case has only one equilibrium 
point at the origin. 
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